

Method for Determining the Environmental Significance of Vapor-Only Releases

Matthew Lahvis - Shell Global Solutions

SAM Forum and Symposium

Department of Environmental Health - Land and Water Quality Division

September 23, 2003, San Diego California

Some Considerations

- Vapor (or small-volume liquid) release identified -- what does it mean?
- Environmental significance different for different gasoline compounds
- Can a consistent and defensible method for evaluating environmental significance of a small-volume release be developed?
- What are the data requirements?

Conceptual Model for Small-Volume

 $C_o(t)^* = J_z(t)/q\rho r$ $C_{well}^* = J_z(t)/J_{well}$

*assumes no mixing/dilution/dispersion in ground water

Field Data: Ground Water in Source Area

MTBE: benzene Theory ~ 200: 1

Observed ~ 15:1

Observed >> 100: 1

Frequency and Occurrence

- UC-Davis/Tracer Research Corp./Ca SWRCB (2002)
 - 182 randomly selected UST systems 55 locations
 - tracer releases: 61% vapor related; < 1 % liquid related
 - tank tops equipment (risers buckets) suspected
 - release rates (estimated < 0.04 gal/d liquid equiv.)
 - uncertainties with investigation
 - o no field validation* (release type, additional sources?)
 - tanks connected in series (which tank?, how many?)
 - difficult to correlate with release rate
 - transfer value?

UST System

Spill bucket design Vapor buckets Dispenser Containment Fill buckets pull riser chain Vent and Vapor **Recovery Piping** band Vent Riser clamp drain valve threads **Product Piping** Tank interstice reservoir & riser Tank gauge **Turbine Sump**

Previous Studies

- API Study (Lahvis and Rehmann, 2000 -- API Tech. Research Bulletin No.10
- API Study (Lahvis, 2003 -- API Tech. Research Bulletin, in press)
- Dakhel et al., 2003 (ES&T)

RESULTS indicate primarily an issue for MTBE, not EtOH

Steady-State MTBE Distribution

(infiltration rate = 20 cm/yr)

0 5.0E-05 1.0E-04 1.5E-04

GASEOUS-PHASE CONCENTRATION (g/cm³)

Conclusions

MTBE

- ppm-level concentrations in ground water are possible
- impacts are most sensitive to infiltration -- less sensitive to soil type, depth to ground water
- mass losses to atmosphere can be significant
 - o e.g., 6 % of initial source mass reaches gw sand, no infiltration, z/L = 0.67
 - o f (infiltration rate, soil type, relative distance of source above water table z/L

Benzene

- impact f (O₂ availability) release history, competing sources?
- capillary zone is barrier
- Breakthrough times (days to years)
 - f (soil type, depth to ground water)

Steady-State EtOH Distribution -- f (bio. rate - k_{EtOH} [sand, no infiltration]

RADIAL DISTANCE (CM)

AQUEOUS-PHASE CONCENTRATION (ppb)

Conclusions

- EtOH
 - transport in vadose zone (under anticipated conditions)
 - o biodegradation critical
 - o no effect on benzene transport
- Travel times 2x to >20x greater for EtOH than for benzene
- Larger volume release, neat EtOH?

Dakhel et al., (2003)

- MTBE
 - validation of API model results
- EtOH
 - migration to ground water not observed unless subject to significant infiltration (182 cm/yr)
 - biodegradation sole removal mechanism

Set-up of the lysimeter experiment (Pasteris et al., 2002)

Evaluating the Potential for Ground-Water Contamination

(*Lahvis and Baehr*, 1999 -- USGS WRIR 99-4018C)

•Focus on:

- BTEX
 - MTBE phased out in CA by Shell
 - EtOH not expected to be an issue unless source is very near (< 0.5 m) water table
- evaluation of potential impacts on ground water achieved through site characterization and type-curve analysis

Evaluating the Potential for Ground-Water Contamination

Governing Transport Equation

D = effective diffusion coefficient

q = ground-water infiltration rate

I = biodegradation rate

C = aqueous-phase concentration

z = distance above water table

Transformed Equation (dimensionless analysis)

$$\frac{\partial^2 C}{\partial x^2} - P_e \frac{\partial C}{\partial x} - D_m C = 0$$

where,

$$P_e = \frac{qL}{D} D_m = \frac{1L^2}{D} x = \frac{z}{L}$$

 P_e = Peclet Number (scales advection and diffusion)

 D_m = Damkohler Number (scales biodegradation and diffusion

Type Curve Analysis

attenuation coefficient

$$a = C_{wat}/C_o$$

Examples

q (cm/yr)	18		
L (ft)	4		
	Renzene	F	

	<u>Benzene</u>	<u>EtOH</u>
D (cm ² /s)	0.001	1.5E-06
λ (1/d)	0.01	0.1
D_{m}	1.8	11,500
P_{e}^{m}	0.1	46

Evaluating the Potential for Ground-Water Contamination For Small-Volume Releases

- Step 1) Site Characterization to confirm "small-volume release" CSM
 - identify/delineate source(s)
 - soil-gas data (measure C_ibenz and C O2)
 - soil data (soil type, presence of NAPL, stratigraphy)
 - ground water data
 - depth to ground water below source (L) or from any soil-gas probe location (L_i)

- Step 3) Compare estimates of a_i obtained from C_i^{benz} and L_i
- Step 3) Monitor potential migration to ground water

$$P_e = \frac{qL}{D}$$

$$D_m = \frac{1L^2}{D}$$

Default values: $D(benzene) = 0.001 \text{ cm}^2/\text{s}$ (EPA, 1996) q = 18 cm/yr (EPA,1996) $1^* = \textbf{0.01} \text{ d}^{-1}$ (aerobic) Howard (1991) $\lambda = 0.001 \text{ d}^{-1}$ (anaerobic) Howard (1991)

^{*} requires confirmation of O₂ availability

Test the Method (i.e. $I = 0.01 \, d^{-1}$) w/ Site Data

- compare observed vs. predicted attenuation at 6 suspected small-volume release sites to see if $\lambda = 0.01$ d⁻¹ is conservative
- problem...no sites with adequate soil-gas concentration data and small-volume release CSM
- assumed soil-gas concentration at source is 10% of benzene concentration in equilibrium with gasoline containing 1% v/v benzene
- calculated observed attenuation based on max. benzene conc. (measured)

	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6
C _o *(ppb)	1,700	1,700	1,700	1,700	1,700	1,700
c _{wat} **(ppb)	0.77	ND	16	100	1.7	0.59
(observed)	0.0005		0.009	0.06	0.001	0.0003

= hypothetical

Predict Attenuation w/ Site Data

Compute values of D_m and P_e

$$P_e = \frac{qL}{D}$$

$$D_m = \frac{IL^2}{D}$$

l (d ⁻¹)	0.01
q (cm/yr)	18
D (cm ² /s)	0.001

	<u>Site 1</u>	Site 2	<u>Site 3</u>	Site 4	Site 5	Site 6
L(ft)	6	10	16	4	18	10
Pe	0.1	0.17	0.28	0.07	0.31	0.17
D_{m}	4	11	28	2	34	11

Predict Attenuation

Comparison of α (observed) with α (predicted)

Small-Volume Release?

Site 3 : benzene/MTBE = 7

Site 5 : ethylbenzene/MTBE = 1.5

l = 0.01 d⁻¹ appears to be conservative
 (C^{benz} and C^{O2} validation required)

Conclusions

- Recent evidence suggests that vapor releases are more common than liquid releases, however, their risk to ground water needs to be quantified on a site-bysite basis.
- The environmental significance of vapor (or small-volume liquid) releases can be determined based on transport in the vadose zone.
- Approach requires confirmation of conceptual model (site characterization) and type-curve analysis.
- Key parameters are C, L, and λ
 - benzene impacts not anticipated for L > 20 ft. if aerobic biodegradation is occurring for small-volume releases
 - selection of λ will depend on O_2 availability
- Method can be applied for other reactive constituents

